
Identification, characterisation and mapping of resistance to black rot (Xanthomonas campestris pv. campestris) in Brassica spp.

Shannon Greer (S.F.Easterlow@warwick.ac.uk)¹

Joana Vicente², Rana Hussain¹, Jamie Harrison³, Julian Smith⁴, Graham Teakle¹, David Studholme³, Vardis Ntoukakis¹, Murray Grant¹

¹The School of Life Sciences, University of Warwick, Wellesbourne Campus, Wellesbourne, Warwick, UK ² Fera Science Ltd, National Agri-food Innovation Campus, Sand Hutton, York, UK ³College of Life and Environmental Sciences, University of Exeter, Exeter, UK ⁴Rothamsted Research, West Common, Harpenden, UK

Biotechnology and **Biological Sciences Research Council**

for Environment Food & Rural Affairs

WARWICK

Introduction

Xanthomonas campestris pv. campestris (Xcc) is a gramnegative bacteria that causes black rot of brassicas.

Xcc causes considerable yield losses in vegetable brassicas and whilst currently not a major pathogen of oilseed rape (Brassica napus), reports of infection are on the increase in the crop^{[1].}

Figure 1. *Brassica napus* (oilseed rape) plants showing symptoms of *Xanthomonas* campestris pv. campestris infection.

Host resistance to *Xcc* is required due to the lack of effective bactericides.

Xcc resistance gene mapping

1. Brassica napus, Brassica oleracea and wild relative **Diversity Fixed Foundation Sets (DFFS)**

Warwick Genetic **Resource Unit** >6000 Brassica accessions much genetic redundancy

Diversity Foundation Sets (DFS) **Reference sample** representing available diversity

Diversity Fixed Foundation Sets (DFFS) Genetically homozygous (fixed) immortal lines

Screen for resistance against the most important *Xcc* races 1, 4, 5 and 6

Project objectives

Biocontrol of *Xcc* in brassicas using Trichoderma

Sequencing and phylogenetic analysis of ~700 *Xcc* isolates

Investigate transmission routes of Xcc

whole plant imaging to visualise *Xcc* infection in brassicas

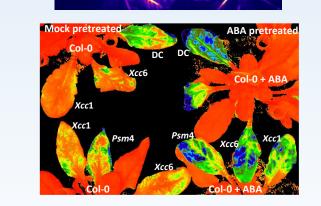
Chlorophyll and

characterisation and

mapping of *Xcc*

resistance in brassicas

2. Identify plant lines with specific and broad spectrum resistance to *Xcc* races


Table 1. Phenotypes of *B. napus* DFFS lines after challenge with four races of *Xanthomonas campestris* pv. campestris.

	No. individuals			
Resistance status	Race 1	Race 4	Race 5	Race 6
Susceptible	134	44	144	138
Partially Resistant	16	17	8	7
Resistant	0	93	2	0
Inconclusive	39	35	35	44

Map resistance to *Xcc* races using GWAS or QTL mapping

Carry out Pest Risk Analyses for potential and emerging Xanthomonas diseases to UK agriculture

Identification and characterisation of Xcc effectors

References:

[1] Jelušić, A., T. Berić, P. Mitrović, I. Dimkić, S. Stanković, A. Marjanović-Jeromela and T. Popović (2021). New insights into the genetic diversity of Xanthomonas campestris pv. campestris isolates from winter oilseed rape in Serbia. Plant Pathology, 70, 35-49. Jelušić, A., T. Berić, P. Mitrović, I. Dimkić, S. Stanković, A. Marjanović-Jeromela and T. Popović (2021). "New insights into the genetic diversity of *Xanthomonas campestris* pv. *campestris* isolates from winter oilseed rape in Serbia." Plant Pathology **70**(1): 35-49.

[2] York Oilseed Rape Knowledgebase (2016). RIPR and OREGIN mRNA-seq data sets. Retrieved 01.06.2021 from Yorknowledgebase -Resouces

3. Identification of candidate *Xcc* resistance genes and **Xcc** resistance-linked genetic markers

C05 CO4 C01 A10 A09 A07 A06 A05 A04 **A03** A02 A01 (

Figure 2. High density SNP map derived from the RIPR and OREGIN mRNA-seq data sets of the *B. napus* DFFS^[2]. These markers will be used to map *Xcc* resistance in *B. napus* by GWAS.