

Fostering Populations Of Arbuscular Mycorrhizal Fungi Through Cover Crop Choices and Soil Management George Crane

Department of Plant Sciences/ NIAB

Ancient Arbuscular Mycorrhizal (AM) Fungi

AM Fungi 450 Million Years Later

- Interact with **80%** of extant land plants
- Essential for ecosystem functioning

- Studies show that colonisation by AMF resulted in:
 - 35% increase in **biomass**
 - 23% increase in yield

..But intensive agriculture detrimental to AM fungi

Image: Mieke Jürgens

(Van Geel et al. 2016, Lekberg and Koide 2005)

(Some) Farming Practices are Detrimental to (Some) AM Fungi

- Agriculture selects for generalists which are tolerant to disturbance
- R-selection favours organisms adapted to environments requiring fast, copious reproduction and dispersal.
- These species may not provide the same benefit to crops
 - Glomus sp. Dominate in agriculture

(Verbruggen and Kiers 2010)

- The use of cover crops promote the establishment, and maintenance of a diverse range of AMF species, which facilitates increased interaction with following cash crops
- 2. Increasing **diversity** and **abundance** of arbuscular mycorrhizal fungi improves **soil health**, crop growth, and yield of following cash crops

Cover Crops Can Improve Colonisation and Diversity of AM Fungi

Increasing AM Diversity To Increase Benefit

Current Projects – UK Wide Assessment of AM Fungal Diversity

FERA Big Soil Community

- UK wide assessment of agricultural soil microbiome
- 258 soil samples submitted
- Sequenced for fungal ITS and bacterial 16S
- No AM fungi detected
- 150 of 258 sites selected
- 18S rDNA for AM fungi
- Nextera barcoded NS31-AML2

83 AM Virtual Taxa (VT) Identified in UK Samples

Most common OTUs

- VTX00281 Paraglomus laccatum
- VTX00283 Ambispora fennica
- VTX00448 Glomus SS-G1
- VTX00349 Paraglomus sp
- VTX00008 Archaeospora s. arch1
- VTX00065 Glomus caledonium
- 46% *Glomus* sp.

Current Projects – Replicated Field Trials

New Farming Systems (NFS) Fertility Building Rotations

- Legume mix, radish and black oat, fallow
- 0%, 50%, 100% nitrogen rate

Cover Crops Increase Colonisation of Spring Barley

Treatment

Fallow
 Radish and Oat
 Legume Mix

Cover Crops Impact Yield of Spring Barley

Current Projects – Replicated Field Trials

Bawburgh Inoculation Trial

	Rep 1									Rep 2									Rep 3								
Trt	2	13	16	15	14	12	6	11	5	6	1	12	14	4	17	5	8	11	16	18	14	11	15	3	1	12	10
Plot	10	11	12	13	14	15	16	17	18	28	29	30	31	32	33	34	35	36	46	47	48	49	50	51	52	53	54
Trt	9	1	18	10	4	3	7	17	8	16	15	10	3	13	9	2	7	18	9	6	17	13	8	7	4	5	2
Plot	1	2	3	4	5	6	7	8	9	19	20	21	22	23	24	25	26	27	37	38	39	40	41	42	43	44	45

Trt

з

Cover crop ± AM Inoculum

Description
Untreated
Untreated+AMF
Smart Radish (10kg/ha)
Smart Radish (10kg/ha)+AMF
Vetch (100kg/ha)
Vetch (100kg/ha)+AMF
Oats (60kg/ha)
Oats (60kg/ha)+AMF
Smart Radish (6kg/ha) + Oats (30kg/ha)
Smart Radish (6kg/ha) + Oats (30kg/ha)+AMF
Smart Radish (10kg/ha) + Oats (30kg/ha)
Smart Radish (10kg/ha) + Oats (30kg/ha)+AMF
Oats (30kg/ha) + Vetch (50kg/ha)
Oats (30kg/ha) + Vetch (50kg/ha)+AMF
Smart Radish (10kg/ha) + Vetch (50kg/ha)
Smart Radish (10kg/ha) + Vetch (50kg/ha)+AMF
Smart Radish (10kg/ha) + Vetch (50kg/ha) + Oats (30kg/ha)
Smart Radish (10kg/ha) + Vetch (50kg/ha) + Oats (30kg/ha)+AMF

AM Inoculum (Almost) Reduces Yield of Spring Barley

Current Projects – Farm Scale Trials

Innovative Farmers (IF) Experiment

- Use of farm produced anaerobic digestate
 (AD) as a soil amendment
- Using cover crops to stabilise soil N, reduce
 nitrification and leaching
- Economic and environmental goals
- Subset of 4 of the original 7 IF sites

IF Experimental Design

- 2 hectare split field plots
- Radish, oat, vetch, (and buckwheat) cover crop
- Maize cash crop
- Farm practice and machinery

Cover Crops Reduce Leaching to Lower Soil Horizons

Maize Biomass Is Not Influenced by Cover Crops or AD

Thanks!

- Dr Lydia Smith and the Innovation Farm team
- Professor Uta Paszkowski and the Cereal Symbiosis lab.
- Dr Nathan Morris, Dr Liz Stockdale, David Clarke, and the trials team at NIAB Morley
- Innovative Farmers: Jim and Patrick Allpress, Andrew Blenkiron, James Beamish, Phil Rayns, Robert England, and David Wright

