

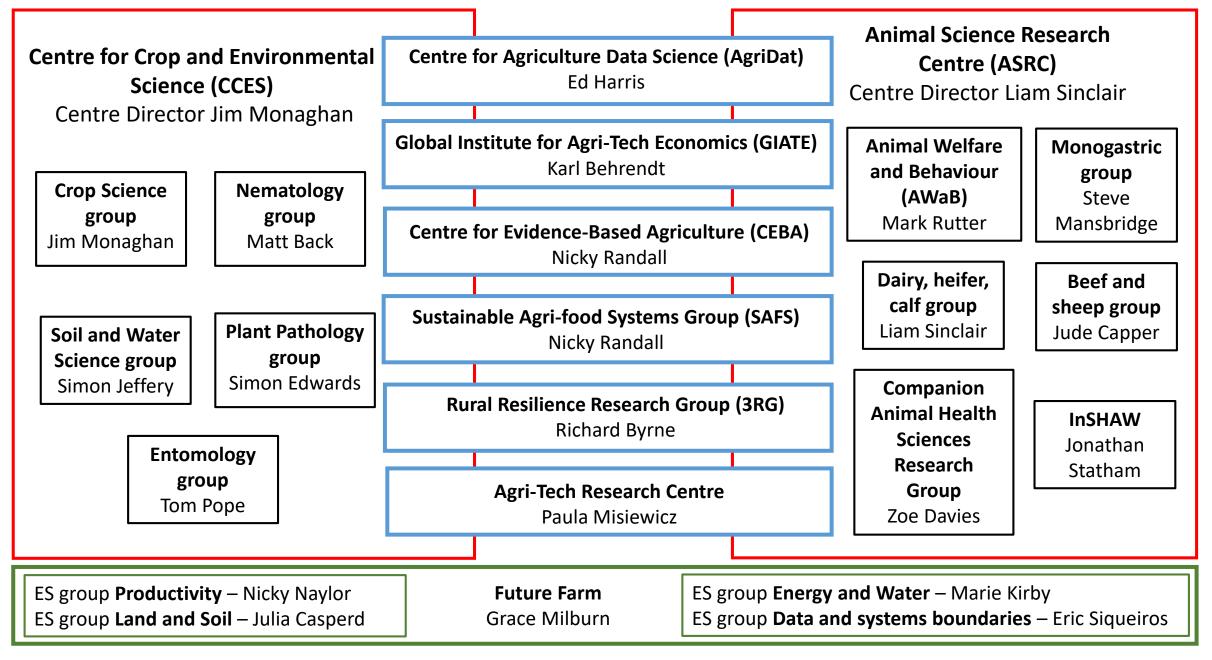
School of **Sustainable** Food and Farming

Harper Adams 2030 Together we will make the difference Animal Science at HAU

Professor Michael Lee et al.

Deputy Vice-Chancellor, Harper Adams University

Insert Video Here


School of Sustainable Food and Farming

Together we aim to:

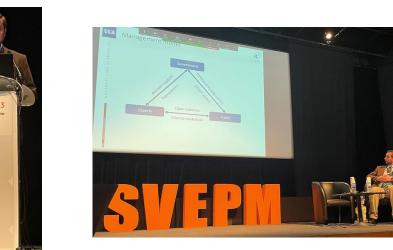
Educate, Inspire and Empower current and future farmers to achieve net zero within a sustainable farming and food system.

HAU Research Centres/Groups & leads

HKVS - Strategic themes

The Interdisciplinary Approach Agriculture and Primary and Veterinary Applied SUSTAINABLE HEALTH, WELFARE & FOOD SECURIT InSHAW INFLUENCING IMPACT Metrics and Analytics

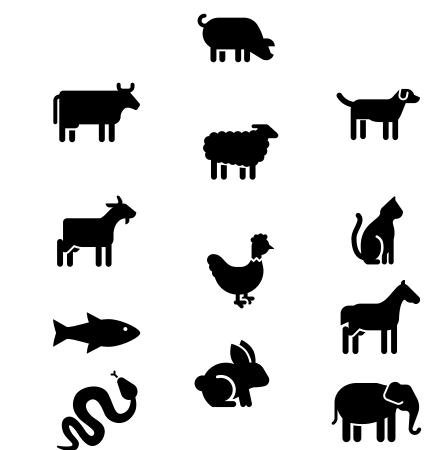
Wellbeing and professional performance


Excellence in primary care research & practice

Veterinary public health: a focus for integrated skills development

EPM 202

FI



HAU tacking the key challenges in Animal Science through education, research and KE

- Nutrition and performance
- Nutritional value food science
- Sustainability and environmental footprint
- Behaviour and welfare
- Animal health
- Veterinary public health OVS training
- Bio-circularity valorisation

Global Warming Potential – mass based assessment (CO₂eq/kg product)

Challenges for the balanced attribution of livestock's environmental impacts: the art of conveying simple messages around complex realities

Pablo Manzano,^{†,‡,•} Jason Rowntree, I^{,•} Logan Thompson,^{\$,•} Agustín del Prado,^{†,‡,•} Peer Ederer,^{¶,•} Wilhelm Windisch,^{**,•} and Michael R.F. Lee^{††,•}

[†]Basque Centre for Climate Change (BC3), E-48940 Leioa, Spain
[‡]Ikerbasque — Basque Foundation of Science, E-48007 Bilbao, Spain
[‡]Department of Animal Science, Michigan State University, East Lansing, MI, USA
[§]Department of Animal Sciences and Industry, Kansas State University, Manhattan, KS, USA
[§]Global Food and Agriculture Network, Rapperswil, Switzerland
^{**}Technical University of Munich, Liesel Beckmann Straße 2, D-85354 Freising, Germany
^{††}School of Sustainable Food and Farming, Harper Adams University, Edgmond, Newport, Shropshire, TF10 8NB, UK

Sheep Meadow Feedlot Seafood Pork Aquaculture Meat Beans, peas Grazing Chicken Eggs beef beef beef seafood substitutes and soy

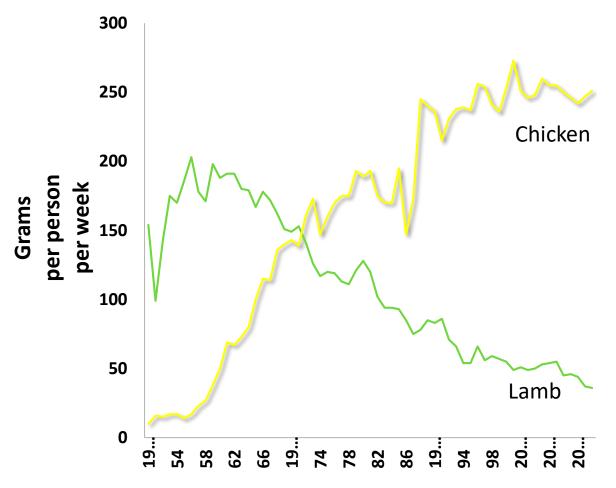
Reproduced from Nature Climate Change: Ruminants, climate change and climate policy; January 2014

70-

60

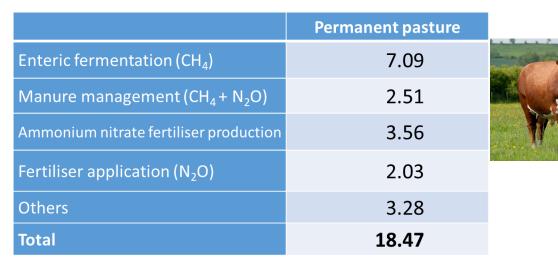
50

30

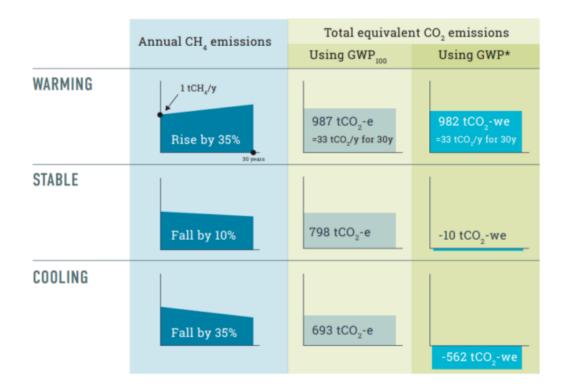

20

10-

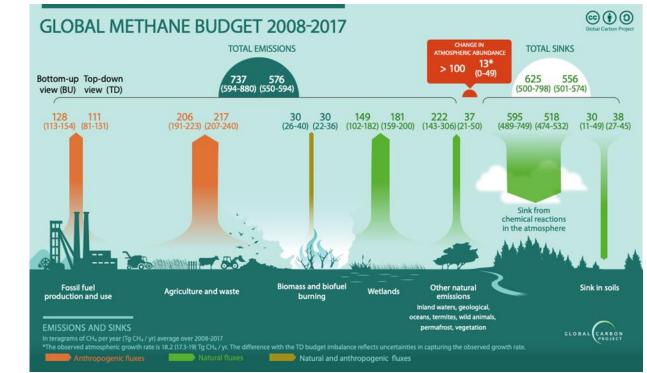
Carbon equivalent footprint (kg CO₂e per kg product)


Danger of global averages

UK livestock consumption



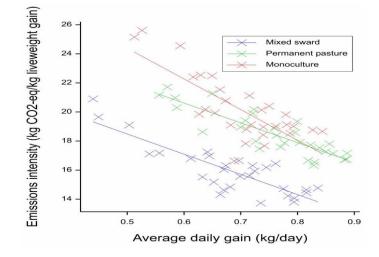
UK ruminant livestock footprint


	Lowland	Upland	Hill	
Enteric fermentation (methane)	4.62	5.59	8.61	1
Nitrous oxide (soils)	3.79	4.18	5.91	
Upstream inputs and others	2.44	3.08	3.34	
Total mean carbon footprint	10.85	12.85	17.86	

GWP* vs GWP100

CH₄ vs OH- (sinks)

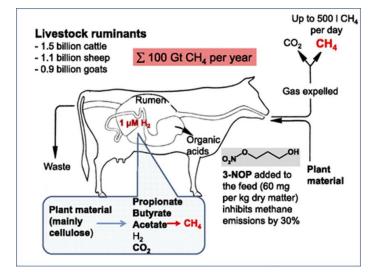
Biogenic CH₄ (Natural + Agriculture)


 $30\% < \text{total CH}_4$

Biogenic CH₄ + Fossil CH₄

Biogenic CH₄ + Fossil CH₄ + Fossil CO

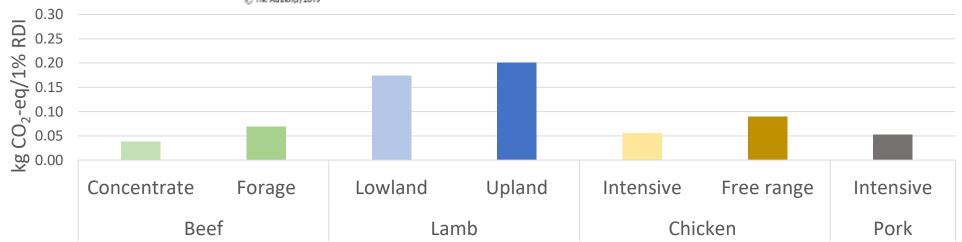
Approaches to Net Zero – 4 steps


1. Animal

3. Land

Species	Yield Class (m ³ ha ⁻¹ year ⁻¹)	Rate of storage' (Mg C ha ⁻¹ year ⁻¹)	Equilibrium carbon storage ¹ (Mg C ha ⁻¹)				
			Trees	Wood products?	Litter	Soil	Total
P sitchensis ⁴	24	5.6	90	42	34	89	254
(unthinned)	22	5.3	88	41	32	90	251
	20	5.1	86	40	30 28	92 87	249
	18	4.7	83	39	28	87	237
	16	4.5	79	37	26	87	229
	14	4.1	74	34	24	83	215
	12	3.7	68	32 30 27	24 21 18 15	77	198
	10	3.4	62	30	18	77 79 72	189
	8	2.9	54	27	15	72	169
	6	2.5	45	22	12	72	152
P. sitchensis ⁴	24	4.4	67	31	29	84	211
(thinned)	22	4.3	67	31	29	87	214
	20	4.1	65	29	26	88	208
	18	3.8	62	29 28	26 25 23	83	198
	16	3.6	59	27	23	0.5	198
	14	3.3	54	26	21	84 80	181
	12	3.0	50	24	19	75	167
	10	2.8	46	22	17	77	162
		2.4	40	20	14	71	
	6	21	36	16	14	71	146
		and the second se					134
Populus	12	7.3	66	36	23	87	212
Salix	19 A	5.9	13	9	6	65	93
Nothofagus	16	4.6	40	17	27	96 75	179
P. sitchensis ⁵	12	3.0	52	24	19	75	170
P. sylvestris	10	2.7	53	26	19	81	178
P. contorta	8	2.5	44	19	15	78	155
F. sylvatica	6	2.4	60	26	27	87	200
Quercus	4	1.8	48	19	20	68	154

2. Diet (composition and supplements)


4. Energy and Buildings

Accounting for nutritional quality

			Beef		Chicken		Lamb		Pork
Nutrient	Unit (per 100 g meat)	RDI	Concentrate	Forage	Intensive	Free range	Lowland	Upland	Intensive
Protein	g	50.25	23.5	23.5	26.3	26.3	20	20	18.6
MUFA	g	37.5	1.13	1.63	3.70	5.44	1.30	1.07	0.85
EPA+DHA	mg	250	3.4	27.4	17.6	14.7	26.4	31.7	14.8
Са	mg	700	5	5	11	11	12	12	10
Fe	mg	11.75	1.6	1.6	0.7	0.7	1.4	1.4	0.4
Riboflavin	mg	The International Journal	of Life Cyde Assessment					0.2	0.18
Folic acid	μg	https://doi.org/10.1007/s1	1367-019-01679-7					6	1
Vitamin B12	μg	CRITICAL REVIEW						1	1
Se	μg					Church	or	3	11
Zn	mg	Applications of nutritional functional units in commodity-level life Check for updates 2 cycle assessment (LCA) of agri-food systems 7 0.07 Graham A. McAuliffe ¹ • Taro Takahashi ¹² • Michael R. F. Lee ^{1,2} 1 1.21						2	1.3
Na	g							0.07	0.05
SFA	g							1.21	0.90

Received: 13 March 2019 / Accepted: 23 August 2019

© The Author(s) 2019

Rebalancing the metric

Animal 15 (2021) 100257

Need to consider nutrient content when defining environmental impact – KgCO2e/1% RDI

Nutritional value of su

M.R.F. Lee ^{a,b,*}, G.A. McAuliff T. Takahashi ^{a,b}, L. Cardenas

^a Rothamsted Research, North Wyke, Okehampto ^b University of Bristol, Bristol Veterinary School, ^c Aberystwyth University, Institute of Biological,

Need to consider

The International Journal of Life Cycle Assessment https://doi.org/10.1007/s11367-022-02123-z

COMMENTARY AND DISCUSSION ARTICLE

Protein quality as a complementary functional unit in life cycle assessment (LCA)

G. A. McAuliffe¹ · T. Takahashi^{1,2} · T. Beal^{3,4} · T. Huppertz^{5,6} · F. Leroy⁷ · J. Buttriss⁸ · A. L. Collins¹ · A. Drewnowski⁹ · S. J. McLaren¹⁰ · F. Ortenzi¹¹ · J. C. van der Pols¹² · S. van Vliet¹³ · M. R. F. Lee¹⁴

Received: 1 October 2022 / Accepted: 29 November 2022 © The Author(s) 2022 e/gfs

RDI of key nutrients

defining environmental impact – KgCO2e/DIAAS corrected protein

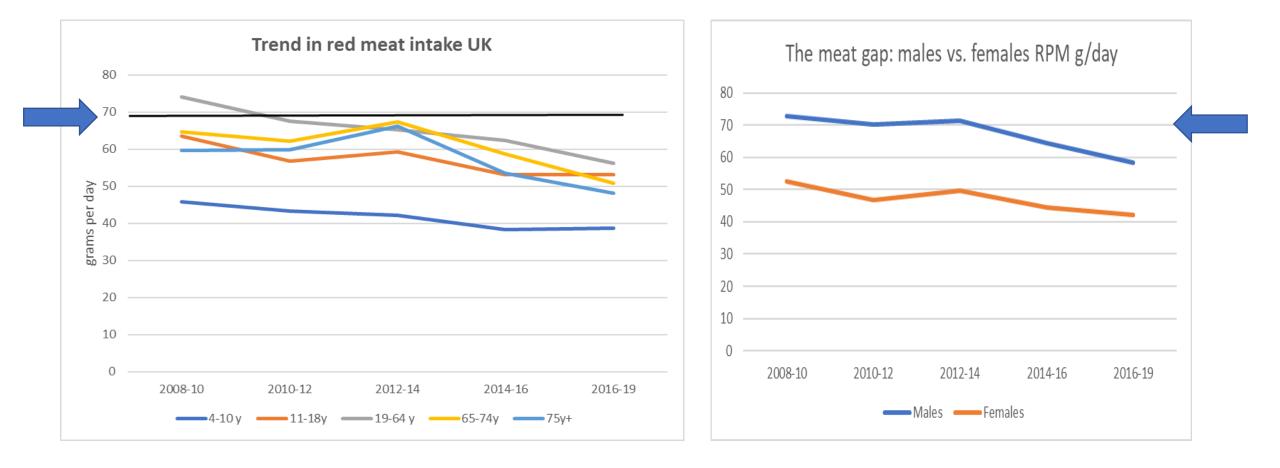
Population protein intakes and food sustainability indices: The metrics matter

Paul J. Moughan

Riddet Institute, Massey University, Private Bag 11-222, Palmerston North, New Zealand

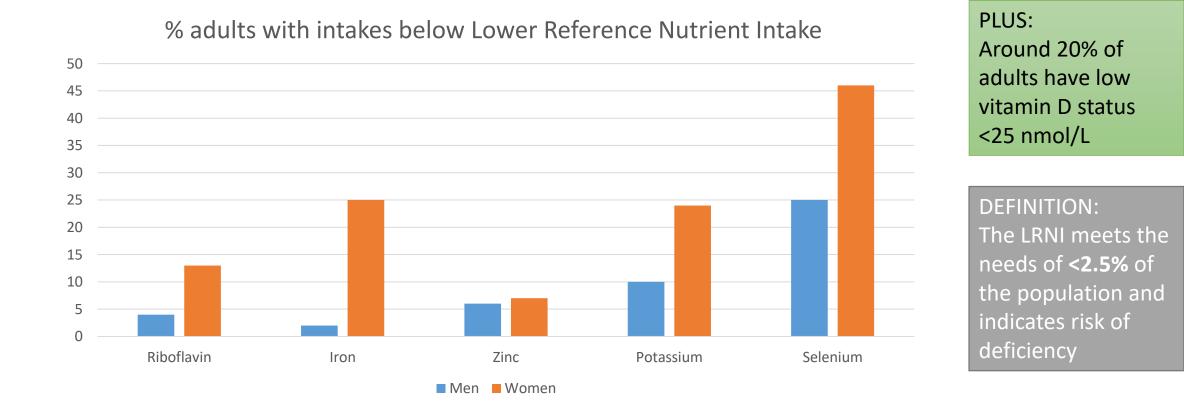
Diet level analysis and NDS

Carrots, tomatoes or cucumbers, <u>always with apples</u>


Potatoes, bread or rice

Beef, pork or tofu

Tofu Carbon footprint comparison (only protein bioavailability corrected*)


	CO2e/Kg	CO2e/NDS	CO2e/bNDS*
Beef	x15.4 tofu	x2.2 tofu	x1.7 tofu
Pork	x3.5 tofu	x1.3 tofu	x1.0 tofu

Care needed with current advice for low meat intake diets - Declining meat intakes

With thanks to Carrie Ruxton – Nutrition Communications

We are already seeing deficiency in meat-sourced nutrients

With thanks to Carrie Ruxton – Nutrition Communications

National Diet & Nutrition Survey 2020

Evidence of benefit of meat-sourced nutrients from meta-analyses of human studies

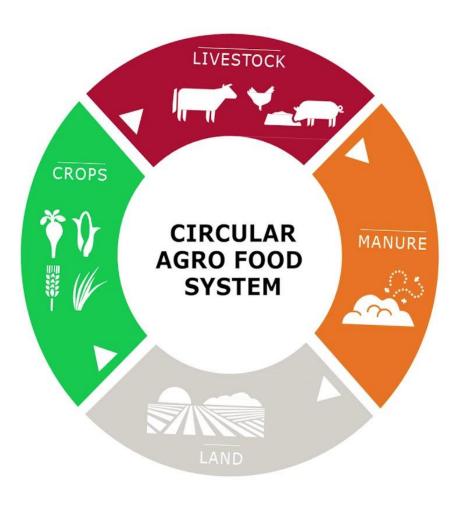
- Improving iron status may reduce fatigue
- Low zinc status associated with respiratory infections & autoimmune conditions
- Vitamin D positively correlated to bone health in adults
- Adequate intake of potassium is desirable to achieve lower blood pressure
- Selenium reduces oxidative stress

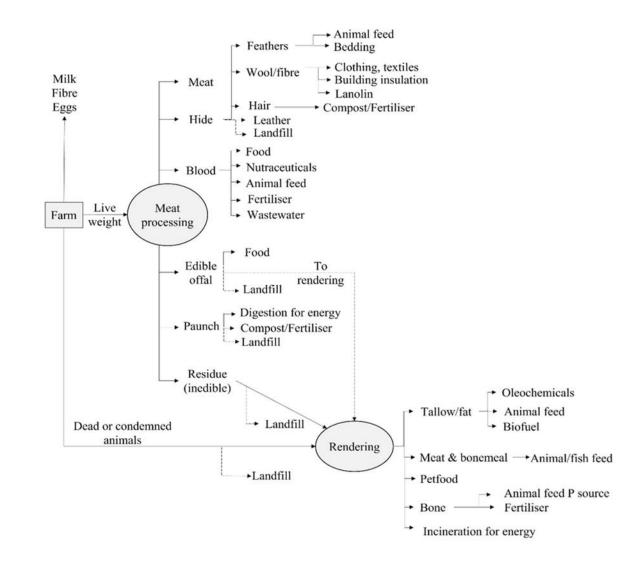
Review > Br J Nutr. 2017 May;117(10):1422-1431. doi: 10.1017/S0007114517001349. Epub 2017 Jun 19.

Iron deficiency without anaemia is a potential cause of fatigue: meta-analyses of randomised controlled trials and cross-sectional studies

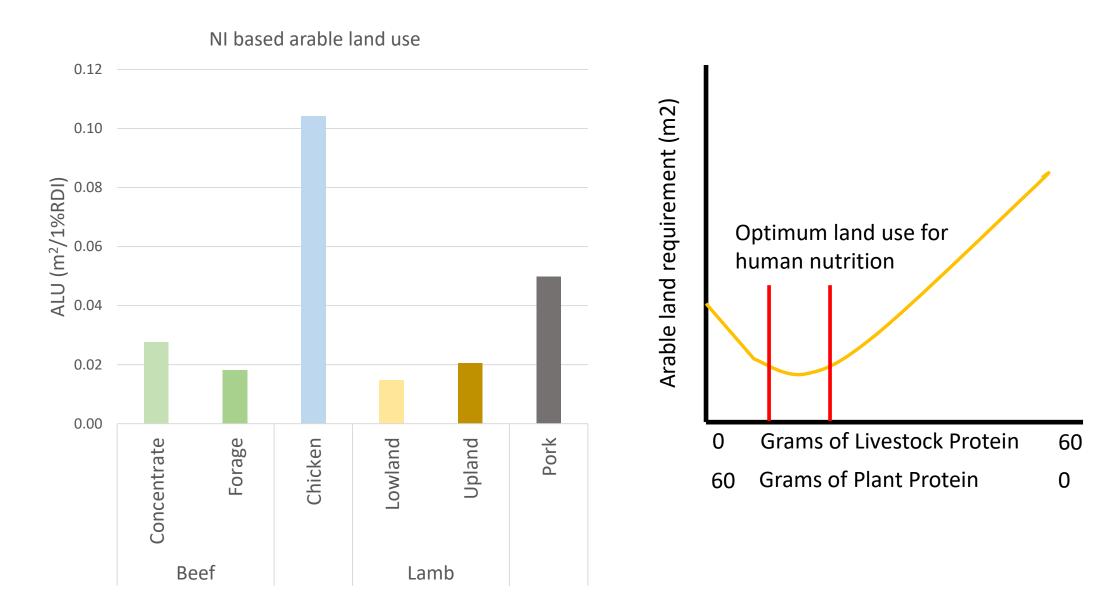
Review > Nutrients. 2018 Jan 11;10(1):68. doi: 10.3390/nu10010068.

Zinc Status and Autoimmunity: A Systematic Review and Meta-Analysis

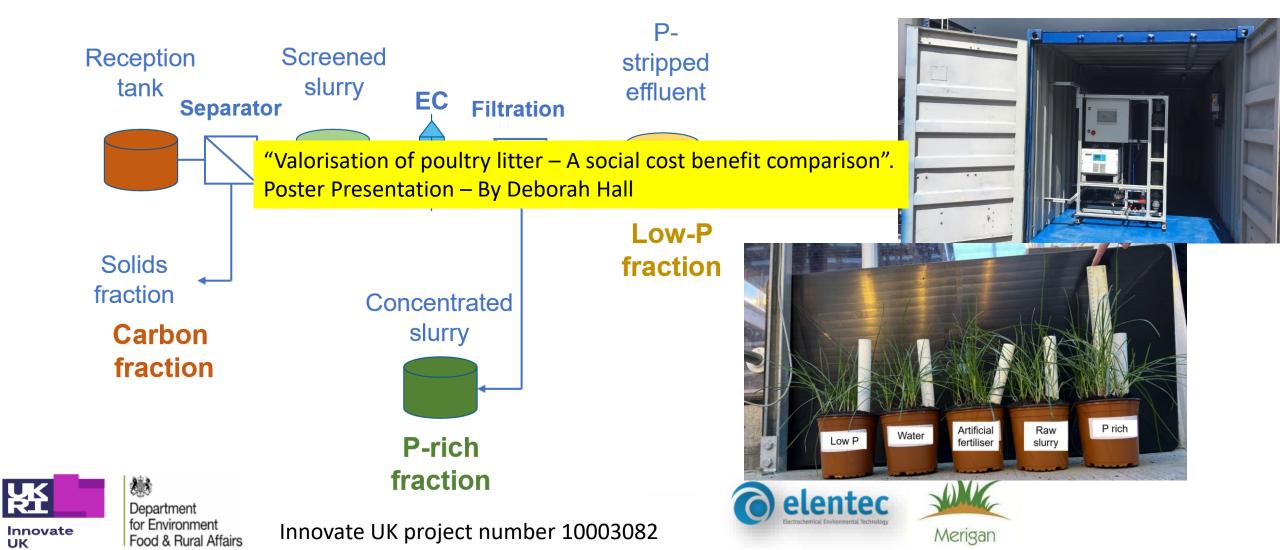

 Meta-Analysis
 > Cien Saude Colet. 2021 Aug;26(8):3221-3244.


 doi: 10.1590/1413-81232021268.15012020. Epub 2020 May 28.

Vitamin D and bone health in adults: a systematic review and meta-analysis


Effect of selenium supplementation on antioxidant markers: a systematic review and meta-analysis of randomized controlled trials

Bio-circularity – FAO role


Arable land use (ALU) per NI provision

Phosphorous recovery from slurry to grassland agronomy

UK

Rhiannon Evans, Simon Jeffery, James McCaughern, Harry Davies and Marie Kirby

