
Crossing traditional and contemporary 
genomic prediction techniques.

Regression trees do not make use of the various 
forms of covariance between samples to improve 
their predictions. 

Two of the challenges that statisticians face when 
performing genomic prediction include accounting 
for epistatic interactions and population structure. 
Each problem favours a different approach. In our 
work, we combine these approaches aiming to 
improve genomic prediction algorithms. 

Population structure (also called genetic structure 
and population stratification) is the presence of a 
systematic difference in allele frequencies 
between subpopulations.[3]

Epistasis is a circumstance where the expression of 
one gene is affected by the expression of one or 
more independently inherited genes [1].

Figure 1. Forms of pairwise epistasis. The fitness (height above the 
plane) effects of different mutations, modelled as flipping a single bit 

of the genotype, can differ depending on the genetic background. 
These forms of epistasis can inhibit evolutionary trajectories between 

two genotypes.[2]

Figure 4. When we fit a 
regression tree we partition 

the sample space based on its 
features. This figure shows 

how a tree partitions a feature 
space. Where, X1 and X2 

represent features and the 
prediction for each group is 

plotted along the Z axis. In our 
current work we are looking at 

changing the positions of 
these partitions to account for 

population structure.[6]
Figure 3. Example decision tree.[5]

Figure 5. When we fit a linear 
mixed-effects model we fit a 

hyperplane to the samples. The 
objective is to maximise the 

likelihood of the training data 
given the hyperparameters. The 
covariance between samples in 
the model is used to calculate 
this likelihood. The covariance 

does not take into account 
epistatic interactions. We aim to 
produce a kernel that does.[6]

Figure 6. When we fit a decision tree we partition the sample space 
based on its features. This figure shows how a tree partitions a 

feature space. In our current work, we are looking at changing the 
positions of these partitions to account for population structure.

Figure 2. Population structure is often measured using the genetic 
covariance between individuals in the population. Here we have 

plotted the covariance as a heatmap. The covariance plotted above 
comes from a Lolium dataset [4] using one of the methods defined by 

Henderson et al [5].

Linear mixed-effect models extend simple linear 
models. They allow for both fixed and random effects. 
They are used when data is not independently 
distributed, such as arises from a hierarchical 
structure [7].

Where

Hence

The G represents the genomic relationship matrix - 
an example of this is displayed in Figure 2. The I is an 
identity matrix. The sample genomes are 
represented by X. The effect of each SNP on the 
phenotype is represented by α. The inclusion of the 
Random Effects Component improve the optimal 
solution of the regressor. Each SNP can be seen to 
act independently of any other SNP.

Regression trees partition a data set into smaller 
groups and then fit a simple model (constant) for each 
subgroup. Unfortunately, a single tree model tends to 
be highly unstable and a poor predictor. [6]

Regression trees are capable of dealing with epistatic 
interactions. This is due to their propensity to split a 
dataset into subgroups.
By bootstrap aggregating (bagging) regression trees, 
this technique can become quite powerful and 
effective. Random Forest is one such example.

We have been looking at ways of augmenting decision 
trees to account for the genomic covariance inherent 
in genomic datasets. Our first attempt involved using 
the genomic relationship matrix - used in linear mixed 
effect models - to change the propensity to split on 
SNPs aligned with population structure.

Linear mixed-effect models in high-dimensional 
spaces can be seen as a form of Gaussian Process. 
Where the random effects and noise terms are 
equivalent to a noisy anisotropic linear kernel.

Our customised trees have a positive effect on the 
error margin of the trees applied to the NIAB MAGIC 
dataset [8]. The result loses significance when 
applied to the Lollium dataset.

This improvement in tree performance does not 
appear to carry through to an improvement once the 
trees are ensembled.

 The Linear mixed effect models are not capable of 
accounting for epistasis. This is due to the linear 
kernel used by these algorithms. Alternative kernels 
that work well with high dimensional data are lacking. 
Thus, we are implementing a kernel that allows these 
models to account for epistasis. This kernel is based 
on how decision trees partition the input space.
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We have more work to do to assess the possibility of 
ensembling our customised decision trees in different 
ways. Our aim in doing this is to allow our 
improvements to instantiate themselves in ensembles.
Further to this we are working to complete and 
implement our decision tree kernel and assess its 
performance across various datasets.
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