

lacksquare

Engineering and Physical Sciences Research Council The DOUGLAS BOMFORD, SUPPORTING AGRICULTURAL ENGINEERING Trust

Unsupervised Landmark Discovery via Self-Training

Dimitris Mallis, Dr Yorgos Tzimiropoulos, Dr Matt Bell

Motivation

Landmark localization can be used for accurate animal monitoring

- Landmarks capture the shape (limb configuration) of the animal
- Essential building block for most vision applications

Core Idea

 Strong landmark detectors are only available on the human-sending domain due to luck of annotated data

Round 2 Round 4

Proposed Architecture

Round 6

Research Challenge

We are exploring the task of Unsupervised Landmark Detection from 2D unlabeled images.

Quantitative Results

PennAction Raw Landmark Accuracy (%)

Method Head Shldrs Elbws Hands Waist Knees Legs

Jakab6.369.237.850.5922.2717.856.48Ours74.2757.9133.008.3664.8169.5475.84

CatHeads Forward-NME (%)

Thewlis	Zhang	Lorenz	Ours
26.94	14.84	9.30	9.31

Conclusions

- Our method can detect meaningful landmarks without need for manual annotations.
- Results show that our method can perform better that other recently proposed methods.
- Can be applied without modification on arbitrary object categories

References

Jakab et al. Unsupervised learning of object landmarks through conditional image generation. NeurIPS 2018 Zhang et al. Unsupervised discovery of object landmarks as structural representations. CVPR 2018 Thewlis et al. Unsupervised Learning of object landmarks by Factorized Spatial embeddings, ICCV 2017 Lorenz et al. Unsupervised Part-Based Disentangling of Object Shape and Appearance. CVPR 2019

Qualitative Results on Animal datasets

Robustness to Changes in Viewpoint

