

NIAB Soils Programme Long-term rotational projects

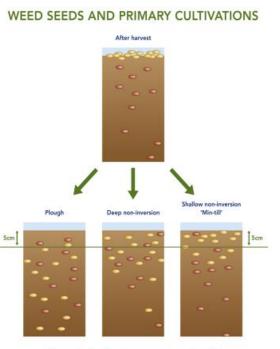
AFCP 5th March 2019

nathan.morris@niab.com

	STAR Project (Sustainability Trial for Arable Rotations)									C	IIA	BTA	G			
	SprinCont	er Cro g Crop	oping s W W	heat		х	Esta • •	Deep Shallo	ent al Plou non-ir ow non aged Ap	iversio i-invers	sion		-		atments olicates	
A MAR	Rotation	2006 (Yr 1)	2007 (Yr 2)	2008 (Yr 3)	2009 (Yr 4)	2010 (Yr 5)	Cropp 2011 (Yr 6)	bing 2012 (Yr 7)	2013 (Yr 8)	2014 (Yr 9)	2015 (Yr 10)	2016 (Yr 11)	2017 (Yr 12)	2018 (Yr 13)		COBBOLD
	1 Winter cropping	WOSR		Winter beans		WOSR	1 st Wheat	Winter Beans	1 st Wheat	WOSR	1 st Wheat	Winter beans	1 st Wheat	2 nd Wheat		Chadacre Agricultural Trus
	2 Spring cropping	Spring Beans		Spring Oats		Spring Beans	1 st Wheat	Spring Linseed	1 st Wheat	Spring Oats	1 st Wheat	Spring beans	1 st Wheat	2 nd Wheat	1	
	3 Cont wheat	Cont Wheat	Cont Wheat			Cont Wheat		Cont Wheat	Cont Wheat	Cont Wheat	Cont Wheat	Cont Wheat	Cont Wheat	Cont Wheat		O Mana Tarat
	4 Alt fallow	Fallow	1 st Wheat	Fallow	1 st Wheat	Fallow	1 st Wheat	Fallow	1 st Wheat	Fallow	1 st Wheat	Fallow	1 st Wheat	2 nd Wheat	J	C Mann Trust
	In the m	anaged	approad	ch the cu	ultivatio	n regime	e is decio	led annual	ly by the	project	steering	group;				AHDB

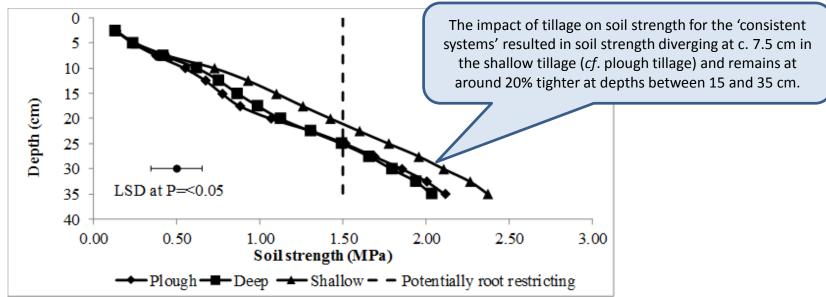
CEREALS & OILSEEDS

this decision is based on soil conditions / assessments, previous cropping, weed burden and local best practice. The techniques used have ranges from single pass approaches through to ploughing.



STAR - Soil physical properties

Plough

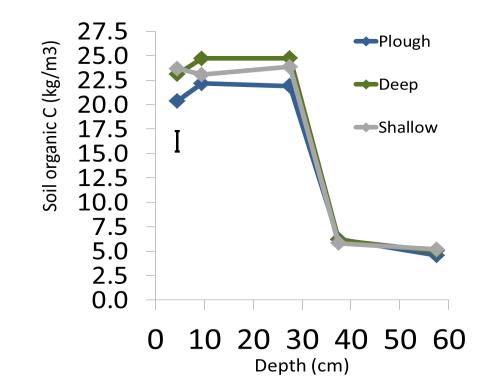

Shallow non-inversion

STAR - Soil strength with respect to tillage approach.

With regard to soil strength, the shallow tillage approach resulted in a tighter soil profile (>15 cm) compared with the plough or deep approaches. (REF: Morris *et al.*, ISTRO, 2018)

STAR yields and margins

Yield as % plough in each rotation and cumulative margin, £/ha 2006-2018


Relative yield (%) (<i>cf.</i> plough)										
	Winter	Spring	Cont. Wheat	Alt Fallow	Average					
Plough	100	100	100	100	100					
Deep	91 (<i>98</i>)	96	97	99	96 (98)					
Shallow	89 (95)	89 (<i>93</i>)	101	99	95 (97)					
Cumulative margin (£/ha)										
Plough	8228	5621 (5859)	5647	4783	6070					
Deep	8145 (8504)	5808 (5994)	5692	5267	6228					
Shallow	6772	5720 <mark>(6040)</mark>	6353	5134	5995					
Average	7715	5716	5897	5061	_					

Where there were failed crops the calculated relative yield or margin with these failures excluded is shown in brackets (*yield/margin*)

STAR - Soil chemical properties - Soil organic C

THE

MORLEY AGRICULTURAL FOUNDATION

Final Report: AHDB PR574 (2017) 'Platforms to test and demonstrate sustainable soil management: integration of major UK field experiments'

NIABTAG Long-term report : 10 key findings

- 1. STAR system and rotation choices have had an agronomic impact on factors including mycotoxin risks and weed burden (notably bromes in non-inversion wheat systems).
- 2. Shallow non-inversion tillage is leading to progressively tighter soils in the continuous wheat rotation and across the winter and spring cropping rotations.
- 3. Considering yields over all crops in the rotation, the difference between cultivation systems is small, however, of the consistent systems, ploughing is tending to give the highest yields.
- 4. While ploughing might give high yields, of the consistent cultivation systems across seasons, the highest margins have been associated with the deep non-inversion system: although again differences are relatively small.
- 5. A variable managed approach (an informed decision each season based on soil, season and agronomic drivers), has performed similarly to the deep non-inversion system.
- 6. Considering wheat alone across seasons, for the consistent cultivation systems, there is little yield difference, with deep non-inversion systems resulting in the highest margins.
- 7. Findings perhaps suggest that tillage decisions are more critical in break crops and also highlight the value of informed soil management decisions to maximise performance.
- 8. Cumulatively, STAR rotational choices have tended to have a bigger impact on margin than primary tillage decisions; with winter cropping rotations giving the higher margins.
- 9. Consideration of timeliness and speed of working across the farm, as well as yield and margin, is critical when scaling findings from STAR up to a farm level.
- 10. One key finding is how much we owe to the supporting Trusts, the STAR advisory group and notably our site host John Taylor; without their input this project would not happen

YEARS OF PLANT SCIENCE

NIAB TAG The STAR Project (Sustainability Trial in Arable Rotations)

BBOLD

Long-term report Years 1-10 (2006 – 2015)

A report for the The Felix Thornley Cobbold Agricultural Trust

Report available on NIAB's website: http://www.niab.com/pages/id/292/Farming S ystems

Soil amendments experiment

3 rotations

- 1. Spring breaks
- Spring breaks + cover crop
- Cont. Wheat (spring breaks 2018 onwards)

With or without 35t ha of compost (applied annually between 2008 and 2011)

Rotations experiment

- 3 Rotations:
- Winter cropping
- Spring cropping
- Mixture of the two

4 cover crop treatments

- standard practice (stubble)
- 2. legume (clover) bi-crop
- legume mix cover crop 3.
- non legume cover crop 4.

N strategies

YEARS OF PLANT SCIENCE

- 1. no nitrogen (N)
- 50% standard N dose 2.
- 100% of standard N dose (220kg/ha WW)

The New Farming Systems **Experiments**

Long term (2007-present) set of trials at Morley, Norfolk (medium, sandy loam soil)

Delivered through NIAB TAG supported by the Morley Agricultural Foundation and The JC Mann Trust

> **Cultivations experiment** 4 cultivation systems 1.

- Plough
- Deep non-inversion (20cm)
- Shallow non-inversion (10cm)
- Managed approach

Stubble or autumn cover crops ahead of spring crops (companion crop in WOSR rape)

THE MORLEY JC Mann Trust

NFS Cultivation experiment

The NFS study explores the interaction between cultivation intensity in a fully replicated experiment on large plots using commercial machinery.

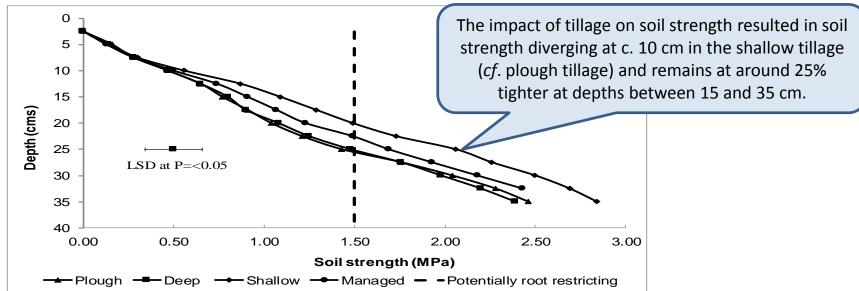
4 cultivation systems:

Plough, Deep and Shallow non-inversion and Managed ± autumn cover crops ahead of spring sown crops

NEW FARMING SYSTEMS

Evaluating cultivation approaches

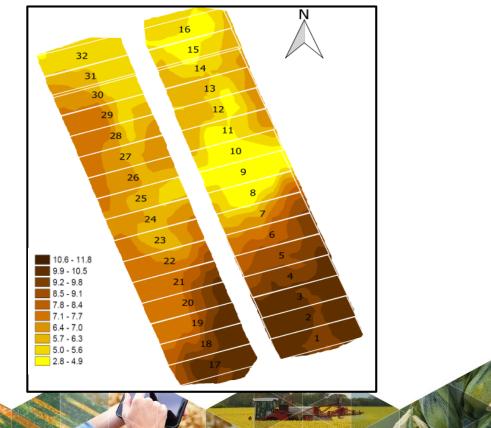
The New Farming Systems (NFS) project is a series of experiments and system demonstrations. The project aims to explore ways of improving the sustainability, stability and output of conventional arable farming systems. The research is being undertaken on a sandy loam soil at Morley in Norfolk



Rotation	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6	Year 7	Year 8	Year 9	Year 10	Year 11
	(2008)	(2009)	(2010)	(2011)	(2012)	(2013)	(2014)	(2015)	(2016)	(2017)	(2018)
Winter	WW	sosr	WW	sbn	WW	sbrly	wosr	WW	soats	WW	wbrly
rotation incl.											
spring breaks											
Cover crop		\checkmark		\checkmark		✓			\checkmark		

NFS - soil strength with respect to tillage approach.

With regard to soil strength, the shallow tillage approach resulted in a tighter soil profile (>15 cm) compared with the plough or deep approaches. Compared to plough tillage, the managed approach remains at around 12% tighter at depths between 15 and 35 cm



NFS - Improving trial experimental design and analysis using soil electrical conductivity scanning

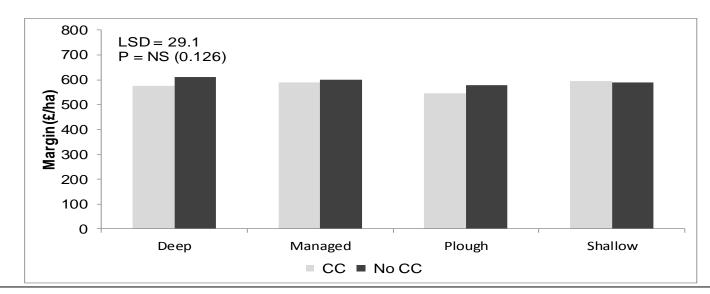
- Measure of a materials ability to conduct an electrical current, often reported in milliSiemens/m (mS/m)
- Correlates well to a soils texture, cation exchange capacity, drainage capacity, organic matter content and subsoil characteristics
- The NFS Cultivation study was scanned for shallow (50cm) and deep (150cm) electrical conductivity (May, 2013)

NFS - Effect of EC on wheat productivity at Morley

The plots where split into 3 groups, low EC (4.1-5.8) medium EC (5.9-8.5) and high EC (8.7-11.3)

	2008	2010	2012	2015	2017	Mean
High EC	507	415	446	317	431	423
Medium EC	486	373	485	310	422	415
Low EC	439	342	426	294	390	378
p=(0.005)	0.006	0.02	0.045	0.211	0.034	
LSD	39.7	36.6	46.1	27.46	31.49	

Winter wheat heads/m² (2008-2017) across the three electrical conductivity groups


Winter wheat yields (2008-2017) across the three electrical conductivity groups

	2008	2010	2012	2015	2017	Mean
High EC	13	8.8	10.5	11.5	10.2	10.8
Medium EC	12.6	7.8	10.5	10.9	10	10.4
Low EC	11.8	5.9	10.4	9.8	8.8	9.3
p=(0.005)	0.001	0.001	0.272	0.001	0.01	
LSD	0.38	0.67	0.2	0.63	0.57	

NFS - Mean margin (£/ha) data for all seasons (2009-2018)

The inclusion of cover crops (including the associated costs for seed and establishment c. £60-80/ha) resulted in no significant increase, or decrease in overall margin. Across the rotation non-inversion treatments resulted in a small increase, on average c. 4-7% in margin, compared to plough tillage; however, this is not statistically significant

Implications for Future Agronomy

- In general, ploughing has tended to result in the highest mean yields across the rotation, with a small but not significant drop to deep and shallow non-inversion systems.
- Across the rotation, the decline in yield was more pronounced on the medium soil type at NFS compared to the heavy soil type in STAR.
- Considered on average across seasons, winter wheat performance in NFS or STAR resulted in no significant yield differences across tillage approaches.
- Despite a significant increase in soil strength in the shallow non-inversion tillage; no significant yield reductions under shallow non-inversion tillage compared to plough tillage were observed.



- Felix Thornley Cobbald Trust
- The Chadacre Trust
- The Morley Agricultural Foundation
- JC Mann Trust
- AHDB
- BBSRC and NERC funding to secure SARIC funding

THE

SAVE THE DATE Visit niab.com/shop for event details and registration